9 research outputs found

    Resilient Wireless Sensor Networks Using Topology Control: A Review

    Get PDF
    Wireless sensor networks (WSNs) may be deployed in failure-prone environments, and WSNs nodes easily fail due to unreliable wireless connections, malicious attacks and resource-constrained features. Nevertheless, if WSNs can tolerate at most losing k − 1 nodes while the rest of nodes remain connected, the network is called k − connected. k is one of the most important indicators for WSNs’ self-healing capability. Following a WSN design flow, this paper surveys resilience issues from the topology control and multi-path routing point of view. This paper provides a discussion on transmission and failure models, which have an important impact on research results. Afterwards, this paper reviews theoretical results and representative topology control approaches to guarantee WSNs to be k − connected at three different network deployment stages: pre-deployment, post-deployment and re-deployment. Multi-path routing protocols are discussed, and many NP-complete or NP-hard problems regarding topology control are identified. The challenging open issues are discussed at the end. This paper can serve as a guideline to design resilient WSNs

    The Influence of Communication Range on Connectivity for Resilient Wireless Sensor Networks Using a Probabilistic Approach.

    Get PDF
    Wireless sensor networks (WSNs) consist of thousands of nodes that need to communicate with each other. However, it is possible that some nodes are isolated from other nodes due to limited communication range. This paper focuses on the influence of communication range on the probability that all nodes are connected under two conditions, respectively: (1) all nodes have the same communication range, and (2) communication range of each node is a random variable. In the former case, this work proves that, for 0menor queepsmenor quee^(-1) , if the probability of the network being connected is 0.36eps , by means of increasing communication range by constant C(eps) , the probability of network being connected is at least 1-eps. Explicit function C(eps) is given. It turns out that, once the network is connected, it also makes the WSNs resilient against nodes failure. In the latter case, this paper proposes that the network connection probability is modeled as Cox process. The change of network connection probability with respect to distribution parameters and resilience performance is presented. Finally, a method to decide the distribution parameters of node communication range in order to satisfy a given network connection probability is developed

    SensoTrust: trustworthy domains in wireless sensor networks

    Get PDF
    Wireless sensor networks (WSNs) based on wearable devices are being used in a growing variety of applications, many of them with strict privacy requirements: medical, surveillance, e-Health, and so forth. Since private data is being shared (physiological measures, medical records, etc.), implementing security mechanisms in these networks has become a major challenge. The objective of deploying a trustworthy domain is achieving a nonspecific security mechanism that can be used in a plethora of network topologies and with heterogeneous application requirements. Another very important challenge is resilience. In fact, if a stand-alone and self-configuring WSN is required, an autosetup mechanism is necessary in order to maintain an acceptable level of service in the face of security issues or faulty hardware. This paper presents SensoTrust, a novel security model for WSN based on the definition of trustworthy domains, which is adaptable to a wide range of applications and scenarios where services are published as a way to distribute the acquired data. Security domains can be deployed as an add-on service to merge with any service already deployed, obtaining a new secured service

    Trust and Privacy Solutions Based on Holistic Service Requirements

    Get PDF
    The products and services designed for Smart Cities provide the necessary tools to improve the management of modern cities in a more efficient way. These tools need to gather citizens’ information about their activity, preferences, habits, etc. opening up the possibility of tracking them. Thus, privacy and security policies must be developed in order to satisfy and manage the legislative heterogeneity surrounding the services provided and comply with the laws of the country where they are provided. This paper presents one of the possible solutions to manage this heterogeneity, bearing in mind these types of networks, such as Wireless Sensor Networks, have important resource limitations. A knowledge and ontology management system is proposed to facilitate the collaboration between the business, legal and technological areas. This will ease the implementation of adequate specific security and privacy policies for a given service. All these security and privacy policies are based on the information provided by the deployed platforms and by expert system processing

    An Improved Otsu Threshold Segmentation Method for Underwater Simultaneous Localization and Mapping-Based Navigation

    Get PDF
    The main focus of this paper is on extracting features with SOund Navigation And Ranging (SONAR) sensing for further underwater landmark-based Simultaneous Localization and Mapping (SLAM). According to the characteristics of sonar images, in this paper, an improved Otsu threshold segmentation method (TSM) has been developed for feature detection. In combination with a contour detection algorithm, the foreground objects, although presenting different feature shapes, are separated much faster and more precisely than by other segmentation methods. Tests have been made with side-scan sonar (SSS) and forward-looking sonar (FLS) images in comparison with other four TSMs, namely the traditional Otsu method, the local TSM, the iterative TSM and the maximum entropy TSM. For all the sonar images presented in this work, the computational time of the improved Otsu TSM is much lower than that of the maximum entropy TSM, which achieves the highest segmentation precision among the four above mentioned TSMs. As a result of the segmentations, the centroids of the main extracted regions have been computed to represent point landmarks which can be used for navigation, e.g., with the help of an Augmented Extended Kalman Filter (AEKF)-based SLAM algorithm. The AEKF-SLAM approach is a recursive and iterative estimation-update process, which besides a prediction and an update stage (as in classical Extended Kalman Filter (EKF)), includes an augmentation stage. During navigation, the robot localizes the centroids of different segments of features in sonar images, which are detected by our improved Otsu TSM, as point landmarks. Using them with the AEKF achieves more accurate and robust estimations of the robot pose and the landmark positions, than with those detected by the maximum entropy TSM. Together with the landmarks identified by the proposed segmentation algorithm, the AEKF-SLAM has achieved reliable detection of cycles in the map and consistent map update on loop closure, which is shown in simulated experiments

    A privacy protection user authentication and key agreement scheme tailored for the Internet of Things environment: PriAuth

    Get PDF
    In a wearable sensor-based deployment, sensors are placed over the patient to monitor their body health parameters. Continuous physiological information monitored by wearable sensors helps doctors have a better diagnostic and a suitable treatment. When doctors want to access the patient?s sensor data remotely via network, the patient will authenticate the identity of the doctor first, and then they will negotiate a key for further communication. Many lightweight schemes have been proposed to enable a mutual authentication and key establishment between the two parties with the help of a gateway node, but most of these schemes cannot enable identity confidentiality. Besides, the shared key is also known by the gateway, whichmeans the patient?s sensor data could be leaked to the gateway. In PriAuth, identities are encrypted to guarantee confidentiality. Additionally, Elliptic Curve Diffie?Hellman (ECDH) key exchange protocol has been adopted to ensure the secrecy of the key, avoiding the gateway access to it. Besides, only hash and XOR computations are adopted because of the computability and power constraints of the wearable sensors.The proposed scheme has been validated by BAN logic and AVISPA, and the results show the scheme has been proven as secure

    Automatic system for providing security services in the Internet of Things applications over Wireless Sensor Networks

    No full text
    This paper describes an automatically determination process of the security services for products and services on the Internet of Things. This process has as inputs the service context, the legislative diversity and the information involved among others. Considering the resources limitations in a Wireless Sensor Networks and the already mentioned inputs, it is possible to find the best solution to apply in each specific case. We will introduce the "Utility Matrix" as a main concept to link all interests of stakeholders regarding their security needs and the legal imperatives. The final solution has been implemented with an expert system. The process outputs are composed by several products as a security policy for the service; a protected data certification, and an effective tool to simulate and evaluate impacts over new services or when service conditions or laws change. Challenges to research over new technical solutions needs can also be obtained. This proposal will connect the Industrial, Judicial and Technological areas working together to obtain trustworthy certifications for all stakeholders. The results have been evaluated in a real scenario made up of a Wireless Sensor Network, over middleware service oriented platform in the framework of ?AWARE project? and the expert system connected to the platform in order to configure the security services

    Automatic system for providing security services in the Internet of Things applications over Wireless Sensor Networks

    Full text link
    This paper describes an automatically determination process of the security services for products and services on the Internet of Things. This process has as inputs the service context, the legislative diversity and the information involved among others. Considering the resources limitations in a Wireless Sensor Networks and the already mentioned inputs, it is possible to find the best solution to apply in each specific case. We will introduce the "Utility Matrix" as a main concept to link all interests of stakeholders regarding their security needs and the legal imperatives. The final solution has been implemented with an expert system. The process outputs are composed by several products as a security policy for the service; a protected data certification, and an effective tool to simulate and evaluate impacts over new services or when service conditions or laws change. Challenges to research over new technical solutions needs can also be obtained. This proposal will connect the Industrial, Judicial and Technological areas working together to obtain trustworthy certifications for all stakeholders. The results have been evaluated in a real scenario made up of a Wireless Sensor Network, over middleware service oriented platform in the framework of ?AWARE project? and the expert system connected to the platform in order to configure the security services

    Long-term effect of a practice-based intervention (HAPPY AUDIT) aimed at reducing antibiotic prescribing in patients with respiratory tract infections

    No full text
    corecore